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The Glauber dynamics of magnetic systems has been extended to the case of neural networks
with a general odd response function. We have derived a set of recursion relations for the overlap
parameter, noise average, and noise variance taken as macrovariables of the process describing the
dynamics of associative memory. The retrieval process has been studied then for a hyperbolic tangent
transfer function by the self-consistent signal to noise ratio method. The fatigue effect of the real
neuron has been taken into account. The phase diagrams of the retrieval process reveal an enhanced
storage capacity for a certain set of values of the parameters. Finally, a set of equations for the
overlap parameters in the case of continuous asynchronous dynamics with nonmonotone neurons has

been analytically derived.
PACS number(s): 87.10.+e, 87.15.—v

I. INTRODUCTION

The neural network models of the associative mem-
ory are dynamical systems with associated attractors to
the cognitive events. A very well known example is the
Hopfield model [1,2] successfully carried out by Amit et
al. [3,4] with the equilibrium statistical mechanics tools.
The dynamics of a neural network with a general response
function [5] is much more difficult to treat than equilib-
rium properties because there is no general framework
corresponding to the Boltzmann-Gibbs equilibrium the-
ory. Even the stochastic master equation of Glauber dy-
namics has been considered only for a monotonic transfer
function of the hyperbolic tangent type [6-10]. Despite
these difficulties, the approximative treatment of the re-
trieval process performed by Amari and Maginu [11] gave
satisfaction for various transfer functions [10,5,12,13], the
only macrovariables used being the overlap of the current
state onto an embedded pattern and the variance.

The aim of this paper is to develop a scheme to treat
the dynamics of both synchronous and asynchronous as-
sociative memories with a general odd transfer function
including nonmonotonic cases. To carry out this task
we have employed the method of Horn and Usher [14]
by using the discrete time master equation to describe
the time evolution of the network state. The macrovari-
ables of the process are the overlap, the variance given
through the signal to noise ratio analysis [11], and the
noise average. We deal here with a self-consistent ex-
traction process of the signal from noise which finally
yields an enhanced storage capacity. This mechanism
of enhancing the storage capacity is different from those
involving the pseudoinverse method [15] or the partial
reversed method [16].

The paper is organized as follows. In Sec. II we de-
velop the general framework of the associative memory
with a general transfer function [5] and successively de-
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rive the generalized macrovariables recursion relations
together with the time-dependent probability and the
discrete master equation. In Sec. III we study the re-
trieval process of an associative memory having a sim-
ple hyperbolic tangent output function by following a
self-consistent signal to noise ratio method. We extend
the Glauber dynamics method to a general odd transfer
function including nonmonotonic functions in Sec. IV.
Finally, the conclusions and suggestions on improvement
are discussed in Sec. V.

II. ASSOCIATIVE MEMORY DYNAMICS

The dynamics of the neural network describes the
change of variables in time. Let us consider a neural
network of N two-state neurons S; = +1 (¢ = 1,...,N),
which interact through the couplings J;; given by the
Hebb rule J;; = & > oh—1 &€ The input-output func-
tion f sets the relationship between the neuron’s new
state S;(t + 1) and the previous network state {S(¢)}

N
Si(t+1) = £ D Ji5S;(t) (Ju=0). (1)

Morita et al. [16-18] have introduced the odd non-
monotonic function f(h), which can be written as a prod-
uct between the ordinary sigmoid output function and a
function ginn(h,a) as

f(h) = tanh(Bh)ginn(h, a), (2)
the output inverting function being
ginn(h, @) = tanh[—y(| A | —a)/2] 3)

with v a positive constant and a the threshold which
makes a transfer function nonmonotone. In the limit
B — oo, tanh Bh — sgn(h) and for v = 00 , ginn(h,a)
resembles a truncated sombrero shape playing the role of
inhibition for an input value greater than a.

In order to implement any general input-output rela-

2619 ©1995 The American Physical Society



2620

tion into the present discrete-time discrete-state network
including the nonmonotonic ones, it is thus natural to
introduce the process

Prob[S;(t + 1)] = %[1 + 8i(t + 1) f (hi(2))], (4)

with a general function f. The absolute value of f should
not exceed 1 because otherwise the probabilistic interpre-
tation (4) does not make sense.

The postsynaptic potential (PSP) or the local field
hi(t) of the ith neuron is expressed as h;(t) =
S, T Silt) = X, €fmi(t) = Elma(t) + Ni(t), where
the overlap m#*(t) with the uth pattern is defined by
mH(t) = 7 >, €' Si(t). Applying the signal to noise ratio
method we can split the PSP into two terms, the pure
signal and the noise h;(t) = £!m!(t) + N;(t) with the
noise term defined by N;(t) = § 3, 3", ., €£€5'S;(t).

We further self-consistently decompose [19] the noise
part into a pure noise component N?(t) and an output
proportional term a.S;(t), the decomposition relation be-
ing N;(t) = N2(t) + aS;(t), with « the memory loading
rate. To include the fatigue effect given by the threshold
contribution [14] one takes the following recursion rela-
tion for the noise term: N;(t + 1) = AN;(¢t) + aS;(t + 1)
with A < 1. Using the notation m = m?!, the overlap pa-
rameter becomes m(t + 1) = % ST EHF(EEm(t) + Ni(b)),
through multiplication by £} and statistical averaging.

Because the function f is an odd function in input,
the factor £} = +1 can be moved into the argument for a
class of input-output functions. [For example, in the case
of f(z) = tanh(z)g(z) we get £ f(z) = tanh({z)g(z), g(z)
being an even function.] The new expression of m(t + 1)
reads

m(e+1) = & 3 F6n(e) + EEN:(0). %)

Let us denote the value &} N;(t) at location 7 by z and
assume that this value is distributed with the probability
P(z,t) given by [14]

P(z,t) = 5 S SEN() - 2); (©)

this probability allows us to write m(¢+ 1) as an integral
equation

mt+1) = /dzP(z,t)f(m(t) +2). )

The value of z at location ¢ changes in one iteration to
Az £ 1 with the probabilities

at(m(t),z) = Z[1 + f(m(t) + 2)],

R

7 (m(6),7) = 5 [1— £(m(t) + 2)] ®)

extended to the general odd input-output function.
These relations give us the discrete master equation as a
recursion relation
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pieten = 3 (0557 P (50)
T (m(t), ZJ;") P (“/\_a,t)]. (9)

Since the most important features of the probability dis-
tribution are the average ¢ and the standard deviation,
let us replace P(z,t) by an expression which contains
these values and can be easily manipulated,

P(z,) = 38(: = C(6) — o(1)) + 36(z = C(8) + o(0).
(10)

Replacing the master equation by its first two moments,
i.e., expectation values of z and 22, we are led to the
following set of recursion relations

mi(t +1) = 5 £ (m(t) = ¢() o (2))

2 Fm(e) = C(8) + o (1)),
C(t+1) = X((t) + am(t + 1),
o (t+1) = Mo () + Ae(®)f(m(t) - () - o(1))
+F(m(e) = <) + (1)
+1 —m2(t+1). (11)

These expressions are different from those obtained in
the Amari-Maginu framework [11].

III. ANALYSIS OF THE RETRIEVAL PROCESS

The analysis of the retrieval process is carried out for a
hyperbolic tangent transfer function because the mecha-
nism responsible for the enhancement of storage capacity
is not caused by the nonmonotonic function as it was ex-
pected. Here we deal with a self-consistent extraction of
the signal from the noise in a recurrent manner.

In Fig. 1 we have plotted the solution of Eqgs. (11)
(the m — ¢ — o set) for T = 0.015, A = 0.1, « = 0.5
and initial conditions m = 0.22 and { = ¢ = 0.1. The
retrieval process exhibits for small values of ( more or
less the same behavior as that obtained by Amari and
Maginu [11]. The difference consists in that our model
is biologically motivated by the fatigue effect and by the
dynamical threshold incorporated in the noise recursion
relation.

A more convincing argument that our model works as
an associative memory would be the attraction basin of a
memory state which comes from Fig. 2. By plotting the
time development of the overlap parameter for T = 0.015,
A = 0.1, a = 0.5, and initial overlap values between m =
0 and m = 1, with increasing ratio 0.05 one can observe
the convergence of solutions to a fixed-point attractor for
m > m., m. being the critical initial overlap which gives
the boundary of the basin of attraction. For m < m. the
retrieval process fails. The other initial conditions are
the same as in Fig. 1 (( =0 = 0.1).

Taking the solutions of the system (11) for 7' = 0.05
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FIG. 1. Graphic solution of Egs. (11) (the m — ¢ — o
set) for T = 0.015, A = 0.1, a = 0.5, and initial conditions
m =0.22and ( =0 =0.1.

with the same initial conditions for the m — { — o set as
those in Fig. 2, we have plotted in Fig. 3 the retrieval
process phase boundary showing the critical storage ca-
pacity a. versus the fatigue parameter A. The diagram
gives a clear-cut separation between the paramagnetic
phase in which m — 0 and the ferromagnetic one be-
low the separation curve, corresponding to successful re-
trieval. The ability of the network to recall an enhanced
number of patterns is obtained when the fatigue vanishes
A = 0, the storage capacity being a. = 0.793. Increasing
A, the storage capacity a. decreases to zero in the A — 1
limit. The pure FM solutions are located under the lower
curve and have the final overlap m = 1. The pure FM
phase denoted by FM1 is separated through a first-order
phase transition line by the others FM solutions having
the final overlap m < 1. The upper boundary line cor-
responds to a second-order phase transition between FM
solutions and the paramagnetic P phase.

In Fig. 4 the phase diagram T = f(a.) of the re-
trieval process is plotted, showing a family of curves for
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FIG. 2. Time development of the overlap parameter for
T = 0.015, A = 0.1, a = 0.5, and initial overlap values be-

tween m = 0 and m = 1 with increasing ratio 0.05. The other
initial conditions are the same as in Fig. 1 (( =0 = 0.1).
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FIG. 3. Retrieval process phase boundary showing the
critical storage capacity versus fatigue parameter A. The pa-
rameters are T' = 0.05 with the same initial conditions for the
m — ( — o set. At A = 0 the storage capacity is a. = 0.793.
The pure FM solutions located under the lower curve, de-
noted by FM1, have the final overlap m = 1 and a first-order
phase transition to the others FM solutions having final over-
lap m < 1. The upper line gives a second-order phase transi-
tion between FM solutions and the paramagnetic (m = 0) P
phase.

A=0,0.1, 0.15, 0.2, and 0.25. Each curve gives the sep-
aration boundary between the FM phase and the para-
magnetic one. Increasing the A parameter to 1, the
boundary approaches 0 and the area of the FM phase
in a.-T coordinates practically vanishes. Thus the effect
of fatigue causes the reduction of associative memory per-
formances, as expected.

IV. CONTINUOUS TIME DYNAMICS

This step considers the continuous time dynamics of
the neural network with nonmonotone neurons. The dy-
namics is given by the equation

Tdu:;ft) = —ui(t) + EJ: Jij £ (u;(t))- (12)

0.5

FIG. 4. Phase diagram T = f(a.) of the retrieval process
showing a family of curves for A = 0, 0.1, 0.15, 0.2, and 0.25.
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Here u;(t) denotes the instantaneous potential of the :th
neuron, f the output function, and J;; the Hebbian cou-
plings. The asynchronous updating relation is

Si(t + At) = f(hi(2)), (13)
with the probability

Prob[Si(t + Af)] = S[1+ Si(OF ()], (19)
where we have taken the S; variables as soft spins [6] with
continuous values between +1 and —1, f the nonmono-
tonic function given by Eq. (2), and h;(¢) the effective
local field.

Incorporating the nonmonotonic input-output function
into the transition rates, we consider the Glauber dynam-
ics governing the time evolution of the microscopic state
{S;} of the neural network. The transition rates are

w(S; = —8;) = %[1 - Sif(hi{S})],
w(=8; = ) = H[1+ S:f (he{S))]. (15)

The Glauber dynamics of the network is then given [8,9]
by the master equation
7]

— SNt
8tP(Sla y ONy )

= w(S; & —S;)P(S1, ..., Si, .-, SN3 1)

+ ) w(=8; = Si)P(S1, .., —Si, s Snit).  (16)

Since p patterns are embedded as memories in the net-
work through the connections, one can divide the system
of N neurons into 2P sublattices I(x) defined [20,21] by
I(z) = {i;¢& = z},z € {—1,1}? , with the sublattice
magnetization m(x,t) = l_I(le)T 2icr(z) Si(t)-

In the thermiodynamic limit N — oo, one defines the
probability p(¢ | ) to have a +1 spin at time ¢ in the =
sublattice. The master equation for one spin reads

Sp(t|7) = —p(t|2) + 31+ FRLsDL ()
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Since the overlaps m*(t) are expressed through the av-
erage m#(t) = (x,m(x,t)), finally, we obtain a set of p
coupled equations for the overlaps m#*(t) given by

d
Em“(t) = —m*(t) + <z”f (; a:um”(t)) > .

(18)

These relations are very general; they are useful for a
wide spectrum of aspects in neural network research.

V. CONCLUSION

In conclusion, this paper develops the idea of extend-
ing the Glauber dynamics from magnetic systems to the
case of neural networks with general odd response func-
tions. The set of recursion relations of Horn and Usher
[14] was extended to the macroscopic variables describing
the dynamics of the associative memory retrieval process
in the self-consistent signal to noise ratio framework. We
have solved Egs. (11) for a hyperbolic tangent trans-
fer function and plotted the phase diagrams showing the
boundary between the FM and paramagnetic phases.
Our phase diagrams of the retrieval process reveal an
enhanced storage capacity of @ — 1 when temperature
T — 0 and the fatigue vanishes. Finally, a continuous
time evolution set of overlap equations for nonmonotone
neurons was analytically derived. This extension helps
the investigation of any neural network having an odd
output function and interesting phenomena such as tem-
poral association and correlated data induced transitions
[22]. The biological relevance of nonmonotonic firing rate
was pointed out by Horikawa [23]. Monte Carlo simu-
lations and a more detailed analysis are planned for a
forthcoming paper.
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